
OA 3302
Summer 2004
Due: 13 July 2004
Java Program 2

Concepts
• Static variables
• Arrays of Objects
• Casting an object
• simkit.random.RandomNumber
• static constructor
• clone()

Description
In this program you will write a class called Deck that can be (conceivably) used as a part of a 

program to play a standard card game such as bridge or poker. A Deck object will be able to shuffle a new 
deck and deal its cards out one at a time, removing each dealt card from the deck as it deals it. It will also 
be able to answer whether it has any more cards and tell how many cards are remaining. Finally, it’s 
toString() method will print out which cards it has in a more intuitive manner than the Card class (see 
Output).

Description of the Deck Class
The Deck class should be in the oa3302 package with the Card class. It should have two 

instance variables: one of type ArrayList and one of type RandomNumber (in the simkit.random 
package). The RandomNumber class will be explained below. Your class should also have a private class 
(static) variable of type ArrayList called unshuffledDeck and two public class variables of 
type String[] (that is, arrays of Strings).

The ArrayList class variable will contain the original, unshuffled deck. Instantiate it in the 
static constructor (to be explained shortly) and initialize it to contain a full deck of Card instances. Classes 
have an analog to a constructor called the static constructor. This is a method that, if defined, is executed 
whenever the class is loaded. Create one for the a class using the static keyword as follows:

static {
// Code that initializes the class

}

Static constructors are used to instantiate class variables that are objects and to perform other ini-
tializations of class variables. First define a class variable of type ArrayList called unshuffled-
Deck. This will hold the original pristine deck of cards. Then, in the static constructor, instantiate 
unshuffledDeck and initialize it with 52 cards. This should look like the following:

static {
unshuffledDeck = new ArrayList(52);
// code that puts 52 cards into unshuffledDeck
// code to initialize String[] arrays.

}

Next, define the two String[] arrays. These will be, respectively, the names of the values and 
the names of the suits and be called VALUE_NAME and SUIT_NAME. They should also be declared 
final. Thus, SUIT_NAME should be declared:

public static final String[] SUIT_NAME;



These arrays should also be initialized in the static constructor. You can “hard-wire” the 
SUIT_NAME array as follows:

SUIT_NAME = new String[] {"Clubs", "Diamonds", "Hearts", "Spades"};

The other array should be defined similarly, starting with the string "Deuce" and ending with " Ace" .
The ArrayList instance variable (“shuffledDeck”) will contain the shuffled cards. Instanti-

ate shuffledDeck in the constructor, but do not put any cards into it there yet. Instead, write a method 
called shuffleNewDeck() whose job it is to add 52 cards to shuffledDeck in “random” order. 
First you will need a source of randomness to do the shuffling.

To create that randomness, use RandomNumber in the simkit.data package. Declare an 
instance variable of type RandomNumber called rng. Instead of instantiating rng using “new”, use Sim-
kit’s abstract factory class called RandomNumberFactory as follows (the following line should be in 
the Deck constructor):

rng = RandomNumberFactory.getinstance(seed);

Here, seed is a long that has been passed to the constructor. RandomNumber has an instance 
method called draw() that returns a pseudo-random number between 0 and 1. The strategy for shuffling a 
new deck is as follows:

1. Remove all elements in shuffledDeck. (Use the clear() method of ArrayList)
2. Create a copy of unshuffledDeck. using the clone() method.1
3. While the copy of the original deck is not empty, pick an element in it at random, add it to 

shuffledDeck, and remove it from the copy. Note that the remove(int) method of 
ArrayList returns the Object that is removed, unlike the remove(Object) method.

The dealCard() method should return the last element of shuffledDeck, removing it in the 
process2. Use the size() and remove(int) methods of ArrayList. See the javadocs if you are 
unsure of what these methods do. dealCard() should have a return of type Card. In order to accom-
plish this, the Object you remove from shuffledDeck must be cast to a Card before it is returned.

The methods getNumberRemainingCards() and hasMoreCards() should return, 
respectively, the number of cards in shuffledDeck and a boolean indicating whether shuffled-
Deck is non-empty. 

Finally, override the toString() method to return a list of the playing cards in shuffledDeck in 
order, one card to a line (as shown in Output below). To help in this, write a public static method 
called formatCard(Card) that returns a String which is the name of the Card. Thus, when input a 
Card with suit = 0 and value = 0, it should return the string “Deuce of Clubs”. The toString() 
method should iterate through the shuffledDeck and build up a String, one card to a line, that it 
finally returns. Note that if you concatenate the character '\n' to a String, it will add a new line to the 
String.

You can write your main method right in the Deck class. It should do the following tasks. Instan-
tiate a Deck with the seed passed in from the command line; if there is no seed on the command line, then 
it should use a default seed of 12345. Shuffle the deck and print it out (toString() implicitly3). Then 

1. You will have to cast the clone: 
 ArrayList temp = (ArrayList) unshuffledDeck.clone();

2. It is much more efficient to remove the last element of a ArrayList than the first element. Removing the 
first element means every other one has to “shift right.” Removing the last element requires no such shift-
ing.
2



deal a card, printing the card that is dealt, and output the number of remaining cards. Shuffle the deck again 
and print out the new order.

Output
A portion of the output is shown below (“SNIP” denotes lines that have been omitted to save 

space).
First Shuffle:
Jack of Hearts
Trey of Spades
Jack of Clubs

<--- SNIP --->

Queen of Hearts
Trey of Clubs
Eight of Diamonds
Nine of Clubs
Queen of Diamonds
King of Diamonds
Six of Clubs

Dealt: Six of Clubs
There are 51 cards left in the deck

Jack of Hearts
Trey of Spades
Jack of Clubs

<--- SNIP --->

Nine of Clubs
Queen of Diamonds
King of Diamonds

Second Shuffle:
Five of Spades
Trey of Clubs
King of Spades

<--- SNIP --->

Six of Diamonds
Six of Hearts
King of Hearts
Six of Spades

3. That is, in main you should just have to write System.out.println(deck); where deck is an object 
of type Deck.
3



Summary of Deck Class

Class Variables: 
private ArrayList unshuffledDeck;
public static final String[] SUIT_NAME;
public static final String[] VALUE_NAME;

Instance Variables: 
private RandomNumber rng; 
private ArrayList shuffledDeck;

Instance Methods: 
public void addCard(Card)
public Card dealCard()
public void shuffleNewDeck()
public int getNumberRemainingCards()
public boolean hasMoreCards()
public String toString()

Class Method:
public static String formatCard(Card)

Deliverables
Turn in a hard copy of the source code for your Deck class and a hard copy of the output as in the 

previous section (but showing all the cards).
4


	Java Program 2
	Concepts
	Description
	Description of the Deck Class
	1. Remove all elements in shuffledDeck. (Use the clear() method of ArrayList)
	2. Create a copy of unshuffledDeck. using the clone() method.
	3. While the copy of the original deck is not empty, pick an element in it at random, add it to shuffledDeck, and remove it from the copy. Note that the remove(int) method of ArrayList returns the Object that is removed, unlike the remove(Object) method.


	Output
	Summary of Deck Class
	Class Variables:
	Instance Variables:
	Instance Methods:
	Class Method:

	Deliverables


